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ABSTRACT
This paper analyses a server farm with a simple management operation,
which is desirable to reduce power consumption. A block of servers is
named as ‘reserves’. Depending on the number of jobs staying in the
system, power-up and power-down thresholds are employed to control
the state of the reserves. In addition, the process of power-up is not
immediately. During the period, the servers cannot serve jobs but still
consuming power. The server may be subject to be breakdown. This
system was modelled by an infinite capacity queueing system and
analysed by matrix-geometric technique. The matrix-geometric method
is applied to compute the rate matrix and the stationary probabilities.
A cost model is formulated to search the optimum number of permanent
server and the optimum power-down threshold. The optimization tasks
are carried out by the direct search method. Both analytic processes and
numerical results provide very useful and helpful information for deci-
sion-makers.
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1. Introduction

Server farm containing a large number of server machines is crucial for data storage and
computation in various network applications. Growing demand of cloud computing makes the
number of server farms increasing significantly, which results in the amount of power consump-
tion of server farms extremely huge. Schwartz, Pries, and Tran-Gia (2012) indicated that a server
farm consumes about 65% of the maximum power consumption even with low load. The efficient
way to keep power consumption low is to turn off the unused server. This study considered
a simple management operation applying to a server farm, which a block of available servers is
designated as ‘reserves’. Depending on the number of jobs staying in the system, the state of the
reserves is controlled by power-up and power-down thresholds. Noted that the process of power-
up is not immediately. During the power-up period, the servers cannot serve jobs but consume
power. In particular, we consider the server may be subject to be breakdown. Regarding to such
a server farm with simple management policy, we employ an unreliable multi-server queueing
system with queue-dependent servers to model such a system. Mangers or decision makers may
be interesting on how to deploy the number of permanent servers and the power-down thresholds
which minimizes the average cost. To do this, a cost function is formulated to search the optimum
number of permanent servers and the optimum power-down threshold which minimizes the
average cost.
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Several researchers have been payed attention on the power management of a data farm. Li
et al. (2017) devised the energy cost optimization architecture with job security guarantee for
Internet server farm. Bai, Chen, Chen, and Wu (2016) presented ECN for multi-service multi-
queue data centre network. For the analysis of queueing system where the number of servers
change depending on the number of requests in the system, Singh (1973) investigated both
M=M=2=1 and M=M=3=1 queueing system. Under a cost structure, Garg and Singh (1993)
tried to search the optimum queue size to maximize the profit for an infinite-capacity M=M=2
queueing system. They constructed a relationship among the cost elements, and then searched
the optimum queue length at which the second server is turned on. The works of Garg and
Singh (1993) was extended by Yamashiro (1996). In addition, Wang and Tai (2000) considered
a finite capacity M/M/3 queue, where the server is heterogeneous. They derived the stationary
features of system such as the expected number of customers and the expected number of
waiting customers. Jain (2005) examined a finite capacity M=M=s queue and obtained the
optimum threshold parameters for turning on the servers by developing a cost relationship
among various cost elements. Efrosinin and Sztrik (2011) dealt with a Markovian queueing
system with two heterogeneous servers which operate under a threshold policy. The faster server
is activated when it is idle and a customer tries to occupy it. The slower server can be activated
only when the number of waiting customers exceeds a threshold level. Ke, Ke, and Lin (2010)
and Lin and Ke (2011) performed an optimization analysis on an M=M=s queueing system by
using genetic algorithm.

On the other hand, Yamashiro and Yuasa (1996) considered both M/M/2 and M/M/3 machine
repair system where the number of repairmen changes depending on the number of failed machines
in the system. Lately, Ke, Liu, and Wu (2015) studied a machine repair system with queue-dependent
heterogeneous repairman and derived the analytically explicit expressions for the stationary prob-
ability of the number of failed machines. They also implemented the direct search method to search
the optimum threshold values and adjust the corresponding the service rate. In addition, Lin and Ke
(2010) proposed a genetic algorithm to decide the optimum threshold values for an infinite capacity
Markovian queueing system with triadic policy. Huang, Hsu, and Ke (2011) used a genetic algorithm
to optimize the controlling arrival and service problem for a two-removable-server system. Liou,
Wang, and Liou (2013) investigated the controllable M/M/2 machine repair system with finite
capacity operating under the triadic policy. They used a genetic algorithm to search the optimum
threshold value and corresponding service rate.

Queueing systems wherein the service channel is subject to breakdowns is a popular subject
that has received a lot of attention. The readers can refer to the paper of Choudhury and Deka
(2008). Choudhury and Deka (2018) dealt with a batch arrival unreliable queue with two phases of
service and Bernoulli vacation schedule under multiple vacation policy. Choudhury and Kalita
(2018) studied an M/G/1 queue with two types of general heterogeneous service and optional
repeated service subject to server breakdowns. In their model, the customer can choose any one
type of service. After completion of either type of service, the customer has the further option to
repeat the same type of service. Ke, Wu, and Pearn (2017) investigated an infinity capacity M/M/2
queueing system under a dynamic operating policy, where two identical removable servers are
assumed to be unreliable. They developed the equilibrium condition of the system and performed
an optimization analysis.

This paper contributes on two important issues. Firstly, we model a server farm with simple
management policy by using an infinite-capacity multi-server queueing system with queue-
dependent heterogeneous servers subject to breakdowns and repairs, where the power-up process
is not instantaneous. Secondly, the optimum number of permanent server and the optimum
power-down threshold can be obtained by developing a cost function. The optimization task is
implemented by the direct search method.
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2. Model description

The discussed server farm consists of N servers which including n permanent servers and
(N-n) standby servers (reserves). Jobs or requests arrive according to a Poisson process with
rate λ. The working server serves one job at a time. Job’s service times are distributed
exponentially with rate μ. An unbounded first-in first-out (FIFO) queue is employed for
those jobs waiting for a server. The server is subject to be breakdowns. Server breaks down
according to exponentially distributed with rate α. When a breakdown occurs, the server goes
for repair immediately, while the job being served is transferred instantaneously to another
server if one is available. If not, the job being served moves to the head of the queue. The
repairing time is exponentially distributed with rate β. Once the number of jobs staying in the
system reach to the power-up threshold U, the reserves are turned on as a block. After
a powering up interval, where the time of powering up is distributed exponentially with rate
ν, they become operational together. During the period of powering up, they cannot serve jobs
but still consume power. On the other hand, to save power and cost, once the number of jobs
staying in the system decreases to a given power-down threshold D, the reserves are turned off.
Assume the operation of power-down is immediately. Any jobs, whose service is interrupted
due to its server is turned off, is instantaneously and immediately moved to another available
server. If not, the interrupted job moves to the head of the queue. The interrupted job will
resume its service from the point of interruption.

A potential application for the discussed model is the deployment of web application on
a cloud. When a web application is deployed on a cloud, a controller, as the portal of cloud,
will establish a queue to hold the client requests. For the reason of cost, a control policy is applied.
A certain number of Virtual Machines (VMs) will be created by the controller on cloud nodes and
be permanently available in the system for performance consideration. The number of initially
created VMs can be specified by Service Level Agreement (SLA). When a client sends a request to
a web application on cloud, the request will be sent to the controller. The dispatcher in cloud
controller forwards the request to the queue of the target web application. The instances of the
target web application running into VMs act as service centres to process the requests in the
queue. The inter-arrival times between any two successive client requests are independent of each
other and have a common probability distribution. The client requests are served in first-come-
first-served orders. Besides, a VM is subject to be breakdowns. When a breakdown occurs, the VM
will be recreated after a time period, while the job being served is transferred instantaneously to
another VM if one is available. If not, the client request being served moves to the head of the
queue. As soon as there are U client requests waiting in the system, the rest of VMs will be
activated to provide service. But it will be removed from the system if the queue length becomes
less than D. An interesting issue raised by this case is to determine the optimal number of
permanent VMs and the optimum D at minimum cost.

3. Mathematical model

The states of investigated system is described by (i, j, k), where i represents the current state of
the block of reserves, i = 0, 1, 2; j means the number of jobs present, j = 0, 1, 2, . . .; and k
represents the number of failed servers, k = 0,1, 2, . . .,n for i = 0,1 and k = 0, 1, 2, . . ., N for
i = 2. It is noted that i = 0 means the reserves are turned off; i = 1 and 2 represent the reserves
are turned on. Figure 1 illustrates the transition diagram of the discussed system. In steady
state, the steady-state probabilities can be presented as Pi

j;k and P2
j;k, where Pi

j;k represents the

probability that there are j jobs present, the current state of reserves is i and k failed servers,
where j = 0, 1, 2, . . . and k = 0, 1, 2, . . ., n for i = 0,1; P2

j;k represents the probability that there

are j jobs present, the reserves are turned on and k failed servers, where j = 0, 1, 2, . . . and
k = 0, 1, 2, . . ., N.
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Using the lexicographical order for the system states, the infinitesimal generator Q of the
presented queueing system is of the form

Q ¼

A0 C0

B1 A1 C1

. .
. . .

. . .
.

BU AU CU

BUþ1 AUþ1 CUþ1

BUþ2 AUþ1 CUþ1

BUþ2 AUþ1 CUþ1

. .
. . .

. . .
.

2
6666666666664

3
7777777777775

(1)

The entries Aj, Bj and Cj are sub-matrices of Q. To obtain these sub-matrices effectively, we define
the following notations.

MA n; j; zð Þ ¼

az;0 α
β az;1 α

. .
. . .

. . .
.

β az;n�1 α
β az;n

2
666664

3
777775

nþ1ð Þ� nþ1ð Þ

and

Figure 1. Steady-transition-rate diagram (i: the current state of the block of reserves, j: the number of jobs present, k: the
number of failed servers).
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MA0 n;N; jð Þ ¼

a0;0 α
β a0;1 α

. .
.

a0;n�1 α
β a0;n

β bnþ1 α
β bnþ2 α

. .
.

β bN

2
666666666666664

3
777777777777775

Nþ1ð Þ� Nþ1ð Þ

(2)

where z=0,1, az,0=-(λ+α+zν+min{n, j}μ), az,n=-(λ+β+zν), bn=-(λ+β),
az,l=-(λ+α+β+zν+min{n-l, j}μ), 1≤l≤n-1, bl=-(λ+α+β+min{N-l, j}μ), n+1≤l≤N-1.

MB n; jð Þ ¼
min j; nf gμ

min j; n� 1f gμ
. .
.

0

2
6664

3
7775

nþ1ð Þ� nþ1ð Þ

;

MB0 n;N; jð Þ ¼

x0
x1

. .
.

xn
xnþ1

. .
.

xN

2
66666666664

3
77777777775

Nþ1ð Þ� Nþ1ð Þ

;

MC n;mð Þ ¼
λ

λ
. .
.

λ 0 � � � 0

2
664

3
775
n�m

and

Md n;mð Þ ¼
ν

ν
. .
.

ν 0 � � � 0

2
664

3
775

nþ1ð Þ� mþ1ð Þ

; (3)

where

xl ¼ min n� l; jf gμ; forl ¼ 0; 1; . . . ; n
min N � l; jf gμ; forl ¼ nþ 1; nþ 2; . . . ;N:

�

Finally, M0(n, m) denotes the zero-matrix of dimension (n + 1)×(m + 1). The size for sub-matrices
Aj, Bj and Cj are tabulated in Table 1.

In Table 1, the notation (n)2 means the matrix is a square matrix of dimension n × n. Based on
Table 1, we establish the sub-matrices Aj as:

Aj ¼ MA0 n;N; jð Þ; 0 � j � D
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Aj ¼
MA n; j; 0ð Þ M0 n; nð Þ M0 n;Nð Þ
M0 n; nð Þ MA n; j; 1ð Þ Md n;Nð Þ
M0 N; nð Þ M0 N; nð Þ MA N; j; 0ð Þ

2
4

3
5; Dþ 1 � j � U

Aj ¼ MA n; j; 1ð Þ Md n;Nð Þ
M0 N; nð Þ MA N; j; 0ð Þ

� �
; U þ 1 � j

and Bj as:

Bj ¼ MB0 n;N; jð Þ; 1 � j � D

BDþ1 ¼
MB n;Dþ 1ð Þ M0 n;N � n� 1ð Þ
MB n;Dþ 1ð Þ M0 n;N � n� 1ð Þ

MB N;Dþ 1ð Þ

2
4

3
5

Bj ¼
MB n; jð Þ M0 n; nð Þ M0 n;Nð Þ
M0 n; nð Þ MB n; jð Þ M0 n;Nð Þ
M0 N; nð Þ M0 N; nð Þ MB N; jð Þ

2
4

3
5; Dþ 2 � j � U

BUþ1 ¼ M0 n; nð Þ MB n;U þ 1ð Þ M0 n;Nð Þ
M0 N; nð Þ M0 N; nð Þ MB N;U þ 1ð Þ

� �

Bj ¼ MB n; jð Þ M0 n;Nð Þ
M0 N; nð Þ MB N; jð Þ

� �
; U þ 2 � j

and Cj as:

Cj ¼ MC N þ 1;N þ 1ð Þ; 0 � j � D� 1

CD ¼ MC nþ 1; 3nþ 3ð Þ M0 n;N � n� 1ð Þ
M0 N � n� 1; 3nþ 2ð Þ MC N � n;N � nð Þ

� �
;

Cj ¼ MC 2nþ N þ 3; 2nþ N þ 3ð Þ; Dþ 1 � j � U � 1

CU ¼ MC nþ 1; nþ N þ 2ð Þ
MC nþ N þ 2; nþ N þ 2ð Þ

� �
;

Cj ¼ MC nþ N þ 2; nþ N þ 2ð Þ; U þ 1 � j

The steady-state equations are given by PQ = 0 in which P denotes the steady-state probability
vector and 0 is the zero column vector. We partition the vector P as P ¼ P0;P1;P2; . . .½ � where

Table 1. The sizes for various sub-matrices in the matrix Q.

j Aj Bj Cj
j = 0 (N + 1)2 - (N + 1)2

1 ≤ j ≤ D-1 (N + 1)2 (N + 1)2 (N + 1)2

j = D (N + 1)2 (N + 1)2 (N + 1) x (2n+N + 3)
j = D + 1 (2n+N + 3)2 (2n+N + 3) x (N + 1) (2n+N + 3)2

D + 2 ≤ j ≤ U-1 (2n+N + 3)2 (2n+N + 3)2 (2n+N + 3)2

j = U (2n+N + 3)2 (2n+N + 3)2 (2n+N + 3) x (n + N + 2)
j = U + 1 (n + N + 2)2 (n + N + 2) x (2n+N + 3) (n + N + 2)2

U + 2 ≤ j (n + N + 2)2 (n + N + 2)2 (n + N + 2)2
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Pj ¼ P0
j;0; P

0
j;1; . . . ; P

0
j;n; P

2
j;nþ1; . . . ; P

2
j;N

h i
; 0 � j � D

Pj ¼ P0
j;0; P

0
j;1; . . . ; P

0
j;n; P

1
j;0; P

1
j;1; . . . ; P

1
j;n; P

2
j;0; P

2
j;1; . . . ; P

2
j;N

h i
; Dþ 1 � j � U

Pj ¼ P1
j;0; P

1
j;1; . . . ; P

1
j;n; P

2
j;0; P

2
j;1; . . . ; P

2
j;N

h i
;U þ 1 � j:

The stability condition should be developed to ensure that the system is stable. Let F be equal
to CUþ1 þ AUþ1 þ BUþ2. It is observed that the matrix F is the infinitesimal generator. Referring
to Theorem 3.1.1 of Neuts (1981), we know the steady-state probability vector exists if and only if
xBUþ2e> xCUþ1e. Assume that x ¼ x10; x

1
1; . . . ; x

1
n; x

2
0; x

2
1; . . . ; x

2
N

� �
is a row vector of the steady-

state probability F. Thus, x satisfies the linear equations xF ¼ 0 and xe ¼ 1. After some routine
manipulations, the stability condition for discussed model can be expressed as

λ<
Xn
k¼0

min U þ 2; n� kf gμx1k þ
XN
k¼0

min U þ 2;N � kf gμx2k:

4. Computing rate matrix and stationary probabilities

The stationary probability vector P of Q exists under the stability condition. Expanding the
equations PQ ¼ 0 yields

P0A0 þ P1B1 ¼ 0 (4a)

Pj�1Cj�1 þ PjAj þ Pjþ1Bjþ1 ¼ 0; 1 � j � U þ 1 (4b)

PUþ1CUþ1 þ PUþ2AUþ1 þ PUþ2RBUþ2 ¼ 0; (4c)

PUþ2R
j�U�3CUþ1 þ PUþ2R

j�U�2AUþ1 þ PUþ2R
j�U�1BUþ2 ¼ 0; U þ 3 � j (4d)

where R is the minimal non-negative solution of the matrix quadratic equation given below:

CUþ1 þ RAUþ1 þ R2BUþ2 ¼ 0 (5)

Since the steady-state probabilities PUþ2;PUþ3;PUþ4; . . .½ � have the following proper-
ty:PUþ2þj ¼ PUþ2Rj for j � 1, Pj j ¼ U þ 3;U þ 4; :::ð Þ can be determined recursively. It is
known (Neuts (1981)) that R is given by lim

n!1Rn, where Rnf g is defined by

R0 ¼ 0 and Rnþ1 ¼ �CUþ1A
�1
Uþ1 � R2

nBUþ2A
�1
Uþ1 for n � 0: (6)

Because Rnf g is certified that it converges to rate matrix R monotonically, the rate matrix R
could be evaluated from above sequences by successive substitutions.

Next, we compute the stationary probabilities. Combining equations (4a)-(4d) recursively, we
obtain

P0 ¼ P1B1 A0ð Þ�1 ¼ P1φ0 (7)

Pj ¼ Pjþ1Bjþ1 � φj�1Cj�1 þ Aj

� �h i�1
¼ Pjþ1φj; 1 � j � U þ 1 (8)

PUþ2φUþ1CUþ1 þ PUþ2AUþ1 þ PUþ2RBUþ2 ¼ 0 (9)
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Consequently, the steady-state probabilities Pj 0 � j � U þ 1ð Þ in equations (7) and (8) can be

written in terms of PUþ2 as PUþ2
Qj

i¼Uþ1 φi and the remaining portion of steady-state probabil-
ities PUþ2;PUþ3;PUþ4; . . .½ � can be determined using PUþ2þj ¼ PUþ2Rj for j � 1. Once PUþ2 is
gained, the steady-state solutions P0;P1;P2; . . .½ � can be derived. It is noted that PUþ2 can be
solved by using Equation (9) and the following normalization condition:

X1
j¼0

Pje ¼ PUþ2

Y0
k¼Uþ1

φk þ PUþ2

Y1
k¼Uþ1

φk þ � � � þ PUþ2φUþ1 þ PUþ2 þ PUþ2Rþ PUþ2R
2 þ � � �

( )
e

¼ PUþ2

XUþ1

j¼1

Yj
k¼Uþ1

φk þ I� Rð Þ�1

" #
e ¼ 1

(10)

The algorithm for computing the steady-state probability is presented as follow:

Algorithm: Recursive solver

Step 1: Compute φ0 ¼ B1 A0ð Þ�1 and φj ¼ Bjþ1 � φj�1Cj�1 þ Aj

� �h i�1
, 1 � j � U þ 1.

Step 2: Compute Φj ¼
Qj

k¼Uþ1
φk, 1 � j � U þ 1.

Step 3: Solve PUþ2φUþ1CUþ1 þ PUþ2AUþ1 þ PUþ2RBUþ2 ¼ 0 and

PUþ2
PUþ1

j¼1

Qj
k¼Uþ1

φk þ I� Rð Þ�1

" #
e ¼ 1 and obtain steady-state probability PUþ2.

Step 4: Obtain steady-state probability P by Pj ¼ PUþ2Φj if 0 � j � U þ 1 and Pj ¼ Pj�1R
if j � U þ 3.

5. Optimization analysis

We denoted the mean number of servers which are consuming power and the mean number of
breakdown servers by S and S1, respectively. The explicit expressions of S and S1 are presented below:

S ¼
XU
j¼0

Xn
k¼0

n� kð ÞP0
j;k þ

X1
j¼Dþ1

Xn
k¼0

N � kð ÞP1
j;k þ

X1
j¼Dþ1

XN
k¼0

N � kð ÞP2
j;k

þ
XD
j¼0

XN
k¼nþ1

N � kð ÞP2
j;k

¼
XD
j¼0

Pj
vn;0

vN�n�1;0

� �
þ

XU
j¼Dþ1

Pj

vn;0
vN;N�n

vN;0

2
64

3
75þ PUþ2 φUþ2 þ I� Rð Þ�1� � vN;N�n

vN;0

� �

S1 ¼
XU
j¼0

Xn
k¼0

kP0j;k þ
X1
j¼Dþ1

Xn
k¼0

kP1
j;k þ

X1
j¼Dþ1

XN
k¼0

kP2
j;k þ

XD
j¼0

XN
k¼nþ1

kP2
j;k

¼
XD
j¼0

Pj
u0;n

unþ1;N

� �
þ

XU
j¼Dþ1

Pj

u0;n
u0;n
u0;N

2
64

3
75þ PUþ2 φUþ2 þ I� Rð Þ�1� � u0;n

u0;N

� �

where vl;m and ul;m denote the vector [l,l-1,. . ., m]T and [l,l + 1,. . .,m]T, respectively.
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A cost function is formulated to make the investigated system viable economically. We assume
that each available server incurs a unit cost c1; each breakdown server incurs a unit cost c2; d1
means the unit cost when the block of reserves is turned on; and each power-down of the reserves
incurs a unit cost d2. Thus the average cost of the system per unit time has the form

C ¼ c1Sþ c2S1 þ d1λ
Xn
k¼0

P0
U;k þ d2μ

Xn
k¼0

min Dþ 1; n� kf gP1
Dþ1;k

þ d2μ
Xn
k¼0

min Dþ 1;N � kf gP2
Dþ1;k þ d2β

XD
j¼0

P2
j;nþ1

:

We investigated the parameter effects on cost function and searched the optimum number
of permanent server and the optimum power-down threshold which minimizes the average
cost. In following cases, we set N (the number of servers) to 20 and the mean service rate μ
was set to 1. The mean power-up interval ν was set to 1. It is assumed that the server
breakdown rate and the repairing rate were chosen as α = 3 and β = 6, respectively. We also
vary the values of arrive rate λ from 6 to 10 with increments of 2. The following cost elements
are adopted: c1 = 30, c2 = 90, d1 = 150, d2 = 100.

Figure 2 shows that the relevance of expected cost C and the number of permanent servers
n for different arrival rate λ. The power-up threshold U was fixed at 20 and the power-down
threshold D was selected optimally in each case, by calculating the average cost for all values
0 ≤ D ≤ U. From Figure 2 one can find that the optimum value of n exists for each value of λ and
the optimum value of n increases as arrival rate λ increases.

The plot in Figure 3 presents the relevance of expected cost C and the power-up threshold
U for different arrival rate λ. The value of n is set to 6. The power-down threshold is again selected
optimally. The other parameters are set as the same as before. It can be observed that the power-
up threshold U should be postponed indefinitely. Based on this, the upper threshold U is set to N.

Next, we searched the optimum number of permanent server and the optimum power-down
threshold which minimize the expected cost when the total number of servers, the power-up
threshold and other system parameters are given. A sensitivity study are performed to search the
optimum values based on changes in specific values of the system parameters. For various values
of λ, α, μ and ν, the numerical results are shown in Tables 2 and Table 3. From these tables, one

0 2 4 6 8 10 12 14 16 18 20
300

350

400

450

500

550

600

650

n

C

λ = 6

λ = 8

λ = 10

Figure 2. C versus the number of permanent server n for different arrival rate λ.
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can find that the number of permanent servers n increases as λ increases or μ decreases. For fixing
μ = 1, ν = 1 and β = 6, Table 2 reveals that both the mean number of servers which are consuming
power S and the mean number of breakdown servers S1 increase as λ increases or μ increases. As
shown in Table 3, for fixing λ = 8, α = 3 and β = 6, both S and S1 decrease as μ increases or ν
increases.

Table 2. (n*, D*) and corresponding minimum C for values of λ and α. (μ = 1, ν = 1, β = 6).

(λ,α) (4,1) (6,1) (8,1) (4,5) (6,5) (8,5)

(n*, D*) (5,13) (7,13) (9,13) (7,15) (9,16) (9,11)
C 167.8264 239.5941 315.0498 411.6985 520.9401 648.1969
S 4.943 7.2166 9.5581 6.5934 7.9735 9.7866
S1 0.1997 0.2000 0.2000 2.2128 2.8939 3.6270
(λ,α) (4,1) (4,3) (4,5) (8,1) (8,3) (8,5)
(n*, D*) (5,13) (5,9) (7,15) (9,13) (9,12) (9,11)
C 167.8264 242.2139 411.6985 315.0498 390.9623 648.1969
S 4.9430 5.2317 6.5934 9.5581 9.5072 9.7866
S1 0.1997 0.8716 2.2128 0.2000 0.9895 3.6270

Table 3. (n*, D*) and corresponding minimum C for values of μ and ν. (λ = 8, α = 3, β = 6).

(μ, ν) (1,0.5) (1.5,0.5) (2,0.5) (1,1.5) (1.5,1.5) (2,1.5)

(n*, D*) (10,14) (7,12) (6,15) (9,12) (7,12) (5,9)
C 397.3926 303.1277 255.0773 385.5293 291.6925 247.3172
S 9.9164 6.9833 5.6293 9.3132 6.5903 5.1799
S1 0.9924 0.9519 0.8995 0.9897 0.9518 0.8798
(μ, ν) (1,0.5) (1,1) (1,1.5) (2,0.5) (2,1) (2,1.5)
(n*, D*) (10,14) (9,12) (9,12) (6,15) (6,14) (5,9)
C 397.3926 390.9623 385.5293 255.0773 250.5332 247.3172
S 9.9164 9.5072 9.3132 5.6293 5.4809 5.1799
S1 0.9924 0.9895 0.9897 0.8995 0.9012 0.8798
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Figure 3. C versus the power-up threshold U for different arrival rate λ.
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6. Conclusions

By using an infinite-capacity multi-server queueing system with queue-dependent heterogeneous
servers subject to breakdowns and repairs, this paper modelled a simple mechanism applying to
a server farm in which a block of available servers is reserving and powering them up and down
depending on the number of jobs staying in the system. This system analysed by matrix-geometric
property. We also derived the formulae for computing the rate matrix and stationary probabilities.
A cost function was formulated to decide the optimum number of permanent server and the
optimum power-down threshold. Some numerical cases were also performed to illustrate how to
choose the control parameters. Both analytical processes and results provide very useful and
helpful information for decision-makers.

Acknowledgements

The authors gratefully acknowledge the constructive comments of editors and the anonymous reviewers. This
research was partially supported by the Ministry of Science and Technology of Taiwan under grants MOST 106-
2221-E-324-016-.

Disclosure statement

No potential conflict of interest was reported by the author.

Notes on contributor

Fu-Min Chang is an assistant professor in the Department of Finance, ChaoYang University of Technology,
Taiwan.He received his Master and PhD degrees from National Chung-Hsing University, Taiwan, ROC, in 1992
and 2005,respectively. His current research interests include the area of queueing network, network performance
evaluation, andsystem and network management.

References

Bai, W., Chen, L., Chen, K., & Wu, H. (2016). Enabling ECN in multi-service multi-queue data centers. 13th
USENIX Symposium on Networked Systems Design and Implementation, Santa Clara, CA, USA, 537–549.

Choudhury, G., & Deka, K. (2008). An M/G/1 retrial queueing system with two phases of service subject to the
server breakdown and repair. Performance Evaluation, 65(10), 714–724.

Choudhury, G., & Deka, M. (2018). A batch arrival unreliable server delaying repair queue with two phases of
service and Bernoulli vacation under multiple vacation policy. Quality Technology & Quantitative Management,
15(2), 157–186.

Choudhury, G., & Kalita, C. R. (2018). An M/G/1 queue with two types of general heterogeneous service and
optional repeated service subject to server’s breakdown and delayed repair. Quality Technology & Quantitative
Management, 15(5), 622–654.

Efrosinin, D., & Sztrik, J. (2011). Performance analysis of a two-server heterogeneous retrial queue with threshold
policy. Quality Technology & Quantitative Management, 8(3), 211–236.

Garg, R. L., & Singh, P. (1993). Queue-dependent servers queueing system. Microelectronic Reliability, 33(15),
2289–2295.

Huang, H. I., Hsu, P. C., & Ke, J. C. (2011). Controlling arrival and service of a two-removable-server system using
genetic algorithm. Expert System with Applications, 38(8), 10054–10059.

Jain, M. (2005). Finite capacity M/M/r queueing system with queue-dependent servers. Computer and Mathematics
with Applications, 50(1), 187–199.

Ke, J. B., Ke, J. C., & Lin, C. H. (2010). Cost optimization of an M/M/r queueing system with queue-dependent
servers: Genetic algorithm. Proceedings, the 5th International Conference on Queueing Theory and Network
Applications, Beijing, China, July 24–26.

Ke, J. C., Liu, T. H., & Wu, C. H. (2015). An optimum approach of profit analysis on the machine repair system
with heterogeneous repairmen. Applied Mathematics and Computation, 253, 40–51.

QUALITY TECHNOLOGY & QUANTITATIVE MANAGEMENT 317



www.manaraa.com

Ke, J. C., Wu, C. H., & Pearn, W. L. (2017). Dynamic operating policy for the controllable queue with two
removable unreliable servers. International Journal of Computer Mathematics: Computer Systems Theory, 2(3),
81–96.

Li, Z., Ge, J., Li, C., Yang, H., Hu, H., Luo, B., & Chang, V. (2017). Energy cost minimization with job security
guarantee in Internet data center. Future Generation Computer Systems, 73, 63–78.

Lin, C. H., & Ke, J. C. (2010). Genetic algorithm for optimal thresholds of an infinite capacity multi-server system
with triadic policy. Expert System with Application, 37(6), 4276–4282.

Lin, C. H., & Ke, J. C. (2011). Optimization analysis for an infinite capacity queueing system with multiple
queue-dependent servers: Genetic algorithm. International Journal of Computer Mathematics, 88(7), 1430–1442.

Liou, C. D., Wang, K. H., & Liou, M. W. (2013). Genetic algorithm to the machine repair problem with two
removable servers operating under the triadic (0, Q, N, M) policy. Applied Mathematical Modelling, 37(18),
8419–8430.

Neuts, M. F. (1981). Matrix geometric solutions in stochastic models: An algorithmic approach. Baltimore, USA: The
John Hopkins University Press.

Schwartz, C., Pries, R., & Tran-Gia, P. (2012). A queuing analysis of an energy-saving mechanism in data centers.
International Conference on Information Networking, Bali, Indonesia, 70–75.

Singh, V. P. (1973). Queue-dependent servers. Journal of Engineering Mathematics, 7(2), 123–126.
Wang, K. H., & Tai, K. H. (2000). A queueing system with queue-dependent servers and finite capacity. Applied

Mathematical Modelling, 24(11), 807–814.
Yamashiro, M. (1996). A system where the number of servers changes depending on the queue length.

Microelectronic Reliability, 36(3), 389–391.
Yamashiro, M., & Yuasa, Y. (1996). Repair system where the repairmen changes depending on the failed machines.

Microelectronic Reliability, 36(2), 231–234.

318 F.-M. CHANG



www.manaraa.com

Copyright of Quality Technology & Quantitative Management is the property of Taylor &
Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.


	Abstract
	1. Introduction
	2. Model description
	3. Mathematical model
	4. Computing rate matrix and stationary probabilities
	5. Optimization analysis
	6. Conclusions
	Acknowledgements
	Disclosure statement
	Notes on contributor
	References

